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For a QED 2 model with SU(n) flavour, the nature of the physical-states space :s more 
subtle than one expects on the basis of the loop criterion for confinement One may 
have colour confinement without confinement of the fundamental flavour representa- 
tion We also discuss attempts to formulate confinement cnterm m which the quark 
fields play a more fundamental role 

1 Introduction 

The standard picture for the possible mechanism for quark confinement which 

originates from ideas of Wilson [1 ] and has been elaborated by several authors [2], 
uses mamly quasi-classical ideas and leads to certain consequences wluch partially 
justify a potential theoretical picture of spatially Increasing Interaction between 

"external" quarks The support comes from lattice investigations [1,3,4] on the one 
hand and certain quahtatlve assumptions on the Callan-Symanzlk/3(g) functions [4] 
(assuming that such functions globally exist). Among the widely-accepted con- 
sequences of this "test-charge" picture, the Wilson loop criterion plays a significant 
role One considers the Wilson (Euclidean) loop integral over the vector potential 

(exp(te f A u dxU)) (1) 

and studies the dependence of ~ts logarithm on the extension of the enclosed sur- 
face If this quanti ty ~s proportional to the area of the enclosed surface, one argues 
that this leads to quark conf'mement (vta an energy increase with the separation dis- 
tance between "quark probes"), whereas a hnear dependence on the extension 0.e., 

t Work supported by the Brazilian Research Council and Kernforschungsanlage Juhch, Germany 
* Brazlhan Research Council Fellow On leave of absence from Departamento de Fislca da 

Pontlflcla Umversidade Catohca, Rio de Janetro, Brazil 
** On leave of absence from and address after 15 8 1977: Inst fur Theoretlsche Physlk der 

Frexen Unwersltat, Berhn, Germany 

61 



62 V. Kurak et al. / Comments on confinement criteria 

the diameter of a square surface) yields the unconfining situation. 
Within the continuous field theory framework the support for the loop criterion 

comes from the Schwinger model, i.e., QED 2 either in its massless- or massive. 
fermion version. A free A~ field coupled to external charges leads to a surface 
increase of (1), whereas the direct computation of the model with quantum ~'s 
shows the absence of charged states in the physical.state space of the solution. Two 
aspects of this model are remarkable: first the loop-confining criterion only works 
with test charges in a theory which contains only  gluon fields. The test fails if quark 
fields are present, the logarithm of the loop integral in that case is easily demon- 
strated to be proportional to the linear dimensions. This fact seems to be implicitly 
known m the existing literature. It is sometimes argued that test charges are equiv- 
alent to infinitely heavy quarks. However, this philosophy taken literally (say in the 
massive QED2) meets some obstacles and its validity in quantum field theory has 
never been rigorously established. The second aspect of the loop picture in two- 
dimensional gauge theories, namely the implication of quark confinement (i.e., the 
non-appearance of the fundamental representation of flavour in the physical spec- 
trum), is not borne out by field theoretical reality of massless QED 2 with SU(2) 
(isospin) flavour. As we will show in sect. 2, this model contains colourless physical 
states with half-integer isospin. The introduction of a quark mass partially suppresses 
this phenomenon, however, for a particular value of one of the parameters of the 
theory (the 0 angle 0 = 7r) colourless 1 = I states will appear. These true bound 
states can be viewed as the relics of the I = i physical states in the massless 
theory. In this way we are able to shed some light on one of Coleman's open prob- 
lems [5]. It is conceivable that m QCD4 theories the quark fields are playing an 
even more essential role than in QED2. For example it may turn out that the loop 
test m the continuous field theory does not give the desired surface proportionality 
and yet the colour of quantum quarks may be confined. If this turns out to be a 
relevant point in future discussions, one would have to consider other criteria for 
confinement. Sect. 3 discusses this point in an (unfortunately) very sketchy and 
speculative way. 

We would like to stress that by colour "confinement" we merely mean the 
absence of coloured states from the physical (gauge-invariant) spectrum. Our use of 
this terminology does not include other physically important properties as state- 
ments on Regge trajectories and the relation to dual-string models [16] and prop. 
erties of hadronic structure which to some extend are implicitly accounted for in 
the Wilson criterion [1 ]. 

2. Model for unconfined fundamental flavour 

The confinement picture based on increasing potentials or on bilocal (or multi- 
local) gauge-invanant strings leads to the disappearance of the fundamental fiavour 
representation from the physical states. As a simple illustration imagine an SU(n), 
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D = 2 Schwinger model with Abelian gauge coupling. The non-confined physical 
states are expected to be "mesons" (i.e., they have @ charge zero) of isospin 
1 = 0, 1, .... This conclusion is, however, false;the physical sector rather contains 
also 1 ffi ~ states. In other words, field theory leads to a more economical confine- 
ment mechanism than potential theory, only the charges coupled to gauge fields 
are confined, the fundamental fiavour (1 = ½), appears among the physical states. 

In the following we give a simple demonstration of this statement. In analogy to 
the ordinary Schwinger model we make the SU(n) ansatz (unitary gauge of ref. [6]): 

d(x) = e ~x':+)(') do (x) e ~x(-)(') , (2) 

x(x) = ~(x) + ~,),ST(x) + i= ,? z(x), (3) 

/ ( x )  =/L(u) +JR(o), 7(x) =/L(u) -/R(v), 

n {ln(u - u' - ie) + i ½rr}, <h.(u)  h . ( u ' )  ) = - g-~ 

n {ln(v - v' - ie) + i ½1r}, <ht(v)ht(v')> = - ~  

u = t + x ,  o = t -  x ,  (4) 

and Z is a free field of mass m. 
From the validity of the Dirac and Maxwell equations: 

i ~  u @t(x) + lira ~e~ u { A u ( x  + e) q / (x )  + @ t ( x ) A u ( x  - e)} = 0 ,  (5) 
e"* O 
e 2 ~ 0  

BvF u~ = -eJU(x), 

we obtain 

e A t , ( x )  = (= - ~) a j ( x )  - a e~,,a"Y~(x), 

(6) 

(7) 

~=~/~ m = e , • 

n 
(8) 

In working out the Maxwell equation we have used the gauge-invariant definition 

J~'(x) = - lira Tr[7°7~(T(x + e, x )  - (T(x + e, x)))] , 
e ."+0 
e2@,O 

where 

T(x, y) = d x(+)(x'y) ,,0o (x) O~(Y) d x-(x'y) , 

(9) 

(to) 
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y 

K(+-)(x, y )  = e f A "(+-) az, + x(+)(x) - ×(-+)(y). (11) 
X 

This leads to 

(n  t - -  e uv ~u ] g ( x ) ,  ( 1 2 )  

and, therefore, via (7) to (6). 
The value a = v ~ / n  leads to the canonical short-distance behavlour of  gauge- 

lnvarlant composites expected from the super-renormallzablhty of  the formal 
Lagranglan 

In contrast to the U(1) Schwlnger model there is no value of  the gauge param- 
eter a such that 

¢ ' (x )  = e '(x/-~/n)'rs~(x) o' , (13) 

where o is a true spurIon, I e., a field with zero dimension and spin The "optimal" 
gauge fulfils 

dim o z = spin o t ---~ - (14) 

The word "optimal" has the precise meaning that only for tins particular gauge 

[ o ' , J , ( x ) ]  = 0 .  (15) 

The operator o k stdl depends on the SU(n) vector current, 1.e, 

[ok, J~] ~ 0 ,  (16) 

with 

J ~ =  507u½X'qJo  - ' (17) - l/s 

This free current is the result of  the gauge-invarlant bdocal limiting procedure. The 
operator algebra of  the physical Hllbert space contains exponential functions o f  Z 
(no Infra-red problem since m 4: 0) and, hence, by a limiting procedure also the o's. 
They generate physical states (without mass gap) winch carry the fundamental 
fiavour but are colourless 

Now we conslder the case of  massive QED2, i.e., the massive version of  the 
Schwmger model. In that case one may Introduce into the free spmor Lagranglark 
a "dummy"  Lagranglan parameter 0 by making a chlral transformation 

M ~  ~ M  ~ + tM ~Ts~0 sin 0 (18) 

The content of  the free theory (1 e ,  the existence o f  two &screte symmetries P and 
C) is not changed Tins is even more visible in the "bosonlzed" version 
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m cos(2V~q~) -+ m cos(2x/~¢ + 0) However, the switching-on of the electromag- 
netxc field converts it into a relevant Lagranglan parameter (a somewhat different 
way ~s to introduce 0 as an apparent non-Lagranglan parameter through cosmolog- 
real boundary behawour of the electric field, see Coleman et al. [7]). In an SU(2) 
theory this procedure leads in the bosomzed descnptmn to [5] (m = x / r ~  e) 

~ =  l~u~ 3,u~ - -~m2q~ 2 + ~ auCPa~Uqaa 

+Mcos  (X/~- $ + 0) c o s ( x / ~  q~3), (19) 

where q~a is the lsovector pseudoscalar potential. The natural U(1) neutral SU(2) 
non-trivial states are described by (we take a bosonlc reahzatlon of these sohtons) 
applying 

e'X/~fx--~O3dx' (20) 

to the vacuum 
With 

1 
lua = - - ~  euv Ov ~a3 , (21) 

these states are members of  an lsotnplet. However, for 0 = rr we have the following 
interesting posslblhty" we use the states generated by the sohton operator with the 
smaller coefficient leading to the third component of lsospm ½. 

e,X/7~lx_~% dx' . (22) 

This m itself would not lead to a fimte energy state, however multiplying It with a 
kink operator Ke~(x) In q~, similar to the quantum kink of the ~ theory, we do ob- 
tain a fimte-energy state m the form 

Ke~(x) e 'x/-~fx-~'Oa dx' 10). (23) 

An expllmt description of K can gwen m terms of a properly modffied Bogohubov 
transformation [8]. The only relevant property for our present use is that K~ 
"rotates" ¢ into - 4  and therefore compensates the undesired change of sign arising 
from using (22) instead of (23). 

So the mass term acts hke a filter for neutral I a = -~ states, only for 0 = rr do 
those states pass and come out The appearance o f / =  ½ physical states m the mass- 
less Schwmger model IS the explanatmn for one of Coleman's problems at the end 
of his paper [5]. 

3. Confinement and bilocals, spurionization of colour 

The short coming of the loop criterion dxscussed m the previous section and the 
possibly more dominant role of quantlzed quark fields m D = 4 makes it desirable 
to find alternatwe tests for colour confinement. 
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In two-dimensional theories of colour confinement the gauge-invariant bilocals 
("dipole operators"), 

Y 

exp(ie f A. dz") **(y), (24) 
x 

turn out to be very useful [9]. For the non-Abelian case the A~ are matrices, the 
integral is path-ordered and a trace over colour indices is to be taken. The short- 
distance problem involved in the ordering of the exponential and the handling of 
the end-point singularities is simple, thanks to the super.renormalizability ofD ffi 2 
gauge theories. 

Let us now look at the behaviour of the gauge-invariant observable 0 in gauge- 
invanant "dipole states": 

<01D t (x, y ) 0  (z)D(x, y)10). (25) 

In order to talk about normalizable states we should perform the well-known quan- 
tum field theoretical smearing in x and y which we will not do in order to keep our 
formulas simple. 

The existence of charged sectors would then come about from the asymptotic 
behaviour of neutral states: apart from small-distance fluctuations the + and - 
charges are expected to stabilize at the ends of the dipole if the separation increases 
and the expectation values are expected to converge in the following sense: 

(D * (x, y )  0 (z) D(x, s)) ~ (~(x) lO(z)l~(x)) F(path). (26) 
y--.t. ~ 

The second factor contains all the complicated dependence on how one goes with 
y "behind the moon"; all the t) dependence is contained in the first factor which 
describes the O expectation value in some state tentatively written as ~010). 

This picture of the reconstruction of charge sectors in a theory of neutral dipoles 
in an extrapolation of the results on sector construction in the algebraic field theory 
for gauge invariance of the first kind [10]. 

The most prominent observables 0 which one may be interested in are the 
charge density, the energy density and their fluctuations: 

O ( z )  = [/o(Z),/o(Zl)lo(Z2), e 

[ ~ ( z ) ,  9~(zl)~(z2),  . .  (27) 

On the other hand, in the presence of colour confinement, one expects no stabiliza- 
tion for increasing distances. In particular the expectation value of]  o (z) should 
reveal that charges do not stabilize at the end-points of strings. This picture of non- 
confinement versus confinement works for all known two.dimensional models. Con- 
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sider the bilocals in the massive (or massless) Schwinger model [9] 

y 
D(x, y) = N(x - y) exp {i,V/'~(Ts #(x) - f eU"Ou6p dx' u - 7s#(y))} ,  

X 

I - i  
1 z-Y~+F c 

U(z) = - ~ [ - i  

L c 

With this N the exponential is normal ordered as a whole (of course different 
ordering prescriptions correspond to different N's). Here ~ is a solution of the mas- 
sive (mass m) sine-Gordon equation. 

The electromagnetic field and the current expressed in terms of ¢ are 

1 
& = - ~ -  e.. a"~, 

(28) 

Fu~ = m eu~ ¢) . (29) 

It is known that the massive sine-Gordon model does not lead to charge sectors. 
Technically speaking, this means that the dipole states do not approach a stable 
limit. Only in the case m --, 0, which is equivalent to the switching-off of electro- 
magnetism, the dipole states converge and the ~[0) in formula (26) is a local charged 
field which generated the topological charge sectors of the Sine-Gordon equation. 

Concerning the generalization of these ideas to D = 4 gauge theories one has to 
pay attention to avoid any artificially generated confinement. A bilocal state of the 
form (36) would be in agreement with Gauss' law (the electric flux goes through a 
line of thin tube). However, forcing all the flux through a thin tube is expected to 
lead to infinite-energy states in the limit (x - y) --, ** which have nothing to do with 
a natural confinement mechanism. Here one should allow for more general flux pic- 
tures in the dipole operators (trace over colour indices): 

D(x, y) = ~k(x) exp(ie f GU(x, y, z) ~ ( z )  d4z) ~btfy). (30) 

For tx = ty one may think of a "Coulombic" shape of the kernel G: 

G u ={0 /a=0 

Ct(x,y.¢.) ~ ( t , -  t,,) , 

(1 1) 
G(x 'Y;z )=-V= I x - z l  l y = z l  " 

(31) 
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With such a general form of the charge "backflow" between x and y we obtain 
gauge-mvarlant dipoles in terms of wluch the confinement discussion can be more 
naturally formulated. Note that this conslderanon is very formal, we have not 
spelled out whach ordering wall lead to a gauge-mvarlant result [13] The formula- 
tlon of a gauge-lnvanant "bllocal" in the non-Abehan theory with A u fluxes differ- 
ent from hne integrals is presently an open problem. 

Again we expect the colour-charge lnstabdlty at the end-points and the increase 
of energy and energy fluctuations to be the signals for confinement 

Therefore this Intuitively reasonable picture of confinement is a good candidate 
for a confinement criterion in two-dimensional gauge theories. In general ~t may not 
be a very manageable criterion A formula m terms of Euchdean functional integrals 
using concepts of integration over winding gauge classes or mstanton solutions [11 ] 
may be preferable Here a slmphfymg idea may be the understanding of confine- 
ment in terms of colour "spurlomzatlon" [12] (or condensation m analogy with the 
BCS theory) expressed by the non-vamshmg gauge-mvarlant 1-point function 
[U(1) flavour] 

L (~) @ O, ~(X) = ~(X) e'efx AU dztZ, (32) 

where A L is the longitudinal part of the gauge field. The decomposmon o fA  u xnto 
Au T and A L makes perfect sense m the Euchdean functional integral. The A u 
configuratxon giving the non-vamshing contribution has non-integer winding num- 
ber [12] For non-trwial flavour groups, say SU(N), the spunomzatlon picture :s 
more complicated (see discussion of sect 2) and one obtains addmonal insight by 
comparing this model with the simple U(1) model. 

The concept of "colour spurlomzatlon" whach we are using here requires some 
remarks Assume that we already know the vanishing of the "gaussmn" colour 
charge QC = fl~ dax on physical states Our formahsm also contains a "counting" 
colour charge coming from the gauge lnvarlance of the first kind. 

~b ~ U 4, UE colour group (33) 

This counting charge should be physically Irrelevant, Le. the description should 
have redundant elements. Indeed m the Schwmger model the gauge-lnvanant (in the 
sense of local 2nd-kmd transformations) ~ has the representanon 

o. L 
~(X) ---- ~(X) e 'e fxA# dz~ = e 'x/-~'ys I~ (x) o ,  ( 3 4 )  

where the x-independent umtary spurlon operator o carries the countmg charge and 
necessarily leads to an mfimte vacuum degeneracy. The umque vacuum description 
corresponding to a dlagonahzatlon of o makes the breaking of the gauge lnvanance 
of the first kind (Le. the counting charge) manifest vta non-vamshlng expectation 
values (3 2). Lookang for signals of  colour confinement vta colour spunonizatlon, 
therefore, means looking for non-vanishing expec~;atlon values of quanUtles which 
formally change under constant gauge transformations but are locally (due to A~ 
fluxes to mfimty) gauge-mvariant. 
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Recently arguments for the posslblhty of transmutation of "internal" (colour) 
spin into space spin have been given [14]. A spurionlzation as (32) which requires 
in some sense the opposite mechanism does not appear to us as an absurd posslblhty 
in four-dimensional quantum field theories It is also conceivable that only colour 
but not spin "spurlonlzes". For example, (for trivial flavour) the space spin may be 
carried by self-dual Majorana fields in which case one would like to show 

where ~ is some gauge-lnvariant ~ similar to the one used in (33). An understanding 
of such colour spurlonlzatlon phenomena in physical (Minkowskl) space presumably 
requires better insight into the field theory of monopoles. Such speculation is based 

on the fact that the understanding of two-dimensional "bosonIzatlon" of charged fields 
has turned out to be helpful for the QED 2 confinement problem. On the other hand, 

two-dimensional confining models can be very efficiently understood In terms of 
"unusual" field configurations [12]. It IS in this direction that we entertain some 
hopes for the understanding o f D  = 4 colour confinement 

The authors wish to thank Prof J Prentkl and the Theoretical Physics Division 
for the kind hospitality extended to them 
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